Embdedings and FC layers
from fastai.basics import *
from fastai.tabular.all import *
from fastai.callback.all import *
from fastai.distributed import *
from fastprogress import fastprogress
from fastai.callback.mixup import *
from fastscript import *

torch.backends.cudnn.benchmark = True
fastprogress.MAX_COLS = 80

get_dls[source]

get_dls(bs=64)

dls = get_dls()
dls.show_batch()
workclass education marital-status occupation relationship race education-num_na age fnlwgt education-num salary
0 State-gov 11th Married-civ-spouse Adm-clerical Husband White False 49.000000 203039.000250 7.0 <50k
1 Private Masters Never-married Exec-managerial Not-in-family White False 42.000000 210524.999580 14.0 <50k
2 Private Assoc-acdm Married-civ-spouse Prof-specialty Wife White False 48.000000 313924.993803 12.0 >=50k
3 Private Bachelors Married-civ-spouse Protective-serv Husband Black False 33.000000 247205.000913 13.0 <50k
4 Private 1st-4th Widowed Handlers-cleaners Not-in-family White False 60.999999 668362.024904 2.0 <50k
5 Private HS-grad Married-spouse-absent Other-service Unmarried Black False 45.000000 234698.998742 9.0 >=50k
6 Private Prof-school Married-civ-spouse Prof-specialty Husband Asian-Pac-Islander False 59.000000 122283.001076 15.0 >=50k
7 Self-emp-not-inc HS-grad Married-civ-spouse Other-service Husband White False 38.000000 184455.999875 9.0 <50k
8 Local-gov Masters Never-married Prof-specialty Own-child White False 25.000000 276249.001345 14.0 <50k
9 Private HS-grad Married-civ-spouse Transport-moving Husband White False 60.000001 85412.997963 9.0 >=50k

train[source]

train(gpu=None, bs=64, epochs=5, fp16=0, dump=0, runs=1)

Training of Tabular data 'ADULT_SAMPLE'.

train_tabular[source]

train_tabular(gpu=None, bs=64, fp16=0, epochs=5, runs=1)