Setting-up type transforms pipelines
Collecting items from att1 att2 att3 att4 att5 att6 att7 \
0 0.537303 0.531103 0.528503 0.529403 0.533603 0.540903 0.551103
1 0.588398 0.593898 0.599098 0.604098 0.608798 0.613397 0.617797
2 -0.049900 -0.041500 -0.033400 -0.025600 -0.018100 -0.010800 -0.003800
3 1.337005 1.319805 1.302905 1.286305 1.270005 1.254005 1.238304
4 0.769801 0.775301 0.780401 0.785101 0.789401 0.793301 0.796801
.. ... ... ... ... ... ... ...
995 -0.751000 -0.749100 -0.747100 -0.745200 -0.743300 -0.741500 -0.739600
996 0.867600 0.860300 0.853300 0.846500 0.840100 0.834000 0.828100
997 0.087398 0.097398 0.107698 0.118298 0.129298 0.140398 0.151898
998 0.664799 0.654799 0.646099 0.638599 0.632299 0.627199 0.623099
999 0.563602 0.569502 0.574902 0.579702 0.583902 0.587702 0.591002
att8 att9 att10 ... att1016 att1017 att1018 \
0 0.564003 0.579603 0.597603 ... 0.546903 0.545903 0.543903
1 0.622097 0.626097 0.630097 ... 0.237399 0.246499 0.256199
2 0.003000 0.009600 0.015900 ... -0.173801 -0.161601 -0.149201
3 1.223005 1.208104 1.193504 ... 1.288905 1.298505 1.307705
4 0.799901 0.802601 0.805101 ... 0.742401 0.744501 0.747301
.. ... ... ... ... ... ... ...
995 -0.737800 -0.735900 -0.734100 ... -0.768600 -0.766100 -0.763500
996 0.822600 0.817400 0.812500 ... 0.847500 0.849800 0.852100
997 0.163498 0.175398 0.187498 ... 0.012198 0.022098 0.032398
998 0.619999 0.617899 0.616699 ... 0.699299 0.698899 0.698099
999 0.593802 0.596202 0.598302 ... 0.176101 0.203402 0.233902
att1019 att1020 att1021 att1022 att1023 att1024 target
0 0.541003 0.537203 0.532303 0.526403 0.519503 0.511403 b'3'
1 0.266499 0.277399 0.288799 0.300899 0.313599 0.326899 b'3'
2 -0.136401 -0.123201 -0.109701 -0.095901 -0.081701 -0.067100 b'1'
3 1.316505 1.324905 1.332805 1.340205 1.347005 1.353205 b'3'
4 0.750701 0.754801 0.759501 0.765001 0.771301 0.778401 b'3'
.. ... ... ... ... ... ... ...
995 -0.760700 -0.757800 -0.754700 -0.751500 -0.748100 -0.744600 b'2'
996 0.854400 0.856800 0.859200 0.861700 0.864100 0.866600 b'3'
997 0.042898 0.053798 0.065098 0.076698 0.088698 0.101098 b'1'
998 0.696899 0.695299 0.693299 0.690799 0.687799 0.684399 b'3'
999 0.267602 0.304802 0.345602 0.390102 0.438302 0.490602 b'3'
[1000 rows x 1025 columns]
Found 1000 items
2 datasets of sizes 800,200
Setting up Pipeline: <lambda> -> TSeries.create
Setting up Pipeline: ColReader -- {'cols': 'target', 'pref': '', 'suff': '', 'label_delim': None} -> Categorize -- {'vocab': None, 'sort': True, 'add_na': False}
Building one sample
Pipeline: <lambda> -> TSeries.create
starting from
att1 -0.525298
att2 -0.516598
att3 -0.508298
att4 -0.500598
att5 -0.493198
...
att1021 -0.638398
att1022 -0.632698
att1023 -0.625898
att1024 -0.617898
target b'2'
Name: 548, Length: 1025, dtype: object
applying <lambda> gives
[-0.52529806 -0.5165981 -0.5082981 ... -0.632698 -0.625898
-0.617898 ]
applying TSeries.create gives
TSeries of size 1x1024
Pipeline: ColReader -- {'cols': 'target', 'pref': '', 'suff': '', 'label_delim': None} -> Categorize -- {'vocab': None, 'sort': True, 'add_na': False}
starting from
att1 -0.525298
att2 -0.516598
att3 -0.508298
att4 -0.500598
att5 -0.493198
...
att1021 -0.638398
att1022 -0.632698
att1023 -0.625898
att1024 -0.617898
target b'2'
Name: 548, Length: 1025, dtype: object
applying ColReader -- {'cols': 'target', 'pref': '', 'suff': '', 'label_delim': None} gives
b'2'
applying Categorize -- {'vocab': None, 'sort': True, 'add_na': False} gives
TensorCategory(1)
Final sample: (TSeries(ch=1, len=1024), TensorCategory(1))
Setting up after_item: Pipeline: ToTensor
Setting up before_batch: Pipeline:
Setting up after_batch: Pipeline:
Building one batch
Applying item_tfms to the first sample:
Pipeline: ToTensor
starting from
(TSeries of size 1x1024, TensorCategory(1))
applying ToTensor gives
(TSeries of size 1x1024, TensorCategory(1))
Adding the next 3 samples
No before_batch transform to apply
Collating items in a batch
No batch_tfms to apply