Sequential(
(0): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(convs): ModuleList(
(0): Conv1d(1, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(1, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(1, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(1, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(1): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(2): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
(1): Shortcut(
(act_fn): ReLU(inplace=True)
(conv): ConvLayer(
(0): Conv1d(128, 128, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(3): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(4): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
)
)
(5): SequentialEx(
(layers): ModuleList(
(0): InceptionModule(
(bottleneck): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
(convs): ModuleList(
(0): Conv1d(32, 32, kernel_size=(39,), stride=(1,), padding=(19,), bias=False)
(1): Conv1d(32, 32, kernel_size=(19,), stride=(1,), padding=(9,), bias=False)
(2): Conv1d(32, 32, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)
)
(conv_bottle): Sequential(
(0): MaxPool1d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv1d(128, 32, kernel_size=(1,), stride=(1,), bias=False)
)
(bn_relu): Sequential(
(0): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
)
)
(1): Shortcut(
(act_fn): ReLU(inplace=True)
(conv): ConvLayer(
(0): Conv1d(128, 128, kernel_size=(1,), stride=(1,), bias=False)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(bn): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(6): AdaptiveConcatPool1d(
(ap): AdaptiveAvgPool1d(output_size=1)
(mp): AdaptiveMaxPool1d(output_size=1)
)
(7): Flatten(full=False)
(8): Linear(in_features=256, out_features=37, bias=True)
)